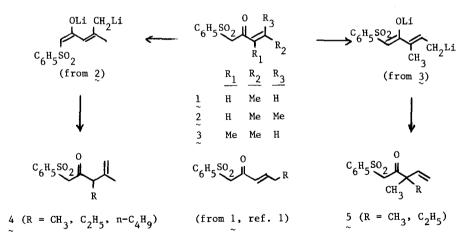
Y-ALKYLATION OF a'-(PHENYLSULFONYL)-a, B-UNSATURATED KETONES:


THE TRIANION IMPERATIVE

by Peter T. Lansbury^{*}, Ciro J. Spagnuolo and Erich L. Grimm Department of Chemistry State University of New York at Buffalo Buffalo, New York 14214

Abstract: Y-alkylation of the title compounds with primary alkyl iodides is possible only when both α' -protons are first ionized with excess lithium diisoproylamide.

We have reported¹ that B-ketosulfone 1 undergoes three-fold ionization (α', α', γ) and that monoalkylation of the resulting trianion with several primary alkyl iodides occurs predominantly at the Y-position.² Upon extending this investigation to B-ketosulfones 2 and 3³ (Scheme I) we find that comparable trianion formation, following the initial first α' deprotonation, does not occur (using up to 5 eqs. of LDA). The second

Scheme I

deprotonation of 2 occurs at the <u>syn-Y-methyl</u> group⁴ ("proximity control"⁵) and the resulting α', Y -dianion undergoes α -alkylation⁶ (including CH₃I), corresponding to the results of Cooke^{7a} and van der Gen^{7b} with similar α', Y -dianions. β -Ketosulfone 3, with the sterically demanding α -methyl group, presumably first forms the Z-enolate (initial E-enolates are expected⁸ from 1 and 2), in which case the second α' -hydrogen is <u>trans</u> to the enolate lithium-oxygen bond and thus inaccessible for proximity-controlled ionization.⁵ Instead, only a Y-proton is removed and alkylation again takes place at C_{α} .⁶ A typical procedure¹ follows:

Seventy-five mg (0.315 mmole) of 2 dissolved in 1 ml of tetrahydrofuran (THF) was slowly added, under argon, to 0.63 mmol of freshly-prepared LDA in 4 ml THF-hexane at -78°. After 1 h, $n-C_{4}H_{9}I$ (61 mg; 0.33 mmol) was added; warming to 25° (1.5 h) was followed by quenching into 10% HCl, then standard workup. Silica gel chromatography afforded 89 mg (96%) of $\frac{4}{2}$ (R=n-Bu) as an oil (R_{f} = 0.82, 1:1 hexane-ether): IR (neat) 1715 cm⁻¹; ¹H NMR (CDCl₃) AB quartet at δ 4.23 (2H, J_{AB} = 14 Hz); 4.9, 5.0 (s, >=CH₂); Anal. ($C_{16}H_{22}SO_{3}$) C, H. Using 5 eqs. of LDA gave identical results. Substituting n-butyl bromide, ethyl bromide and methyl iodide as alkylating agents gave ca. 50-90% yields of $\frac{4}{2}$ (R=n-Bu, ethyl, methyl).

<u>Acknowledgment</u>: We are grateful to the National Science Foundation (Grant 8026526) for support of this research.

References and Footnotes

- P. T. Lansbury, G. E. Bebernitz, S. C. Maynard and C. J. Spagnuolo, <u>Tetrahedron Lett.</u>, <u>26</u>, 169 (1985).
- In contrast, methyl iodide reacts only at the doubly-ionized a'-position of the trianion, while other iodides are too hindered to alkylate there.
- 3. <u>Keto-sulfone 2</u>, mp 101-2°, was prepared (86% yield) from C_H_SO₂CHLi and methyl senecoiate (cf. J. D. White <u>et al</u>, J. Am. Chem. Soc., <u>105</u>, 6517²(1983)): IR_(CHCl₃) ¹⁶⁸⁵ cm⁻¹; ¹H NMR (CDCl₃) & 7.9-7.4 (m, 5H), 6.25 (s, 1H), 4.15 (s, 2H), 2.1 (s, 3H), ¹.9 (s, 3H); Anal. (C₁₂H₁₄SO₃) C, H.

<u>Keto-sulfone</u> 3, mp. 73-4°, was prepared (75% overall) by adding C₂H₅SO₂CH₂Li to tiglic aldehyde and oxidizing the crude carbinol with MnO₂ in methylene chloride: IR (CCl₄) 1675 cm⁻; H NMR: Y 7.9-7.4 (m, 5H), 6.80 (q, J=7 Hz, ²H), 4.42 (s, 2H), 1.89 (d, J=7, ³H), 1.74 (s, 3H); Anal. ($C_{12}H_{14}SO_3$) C, H.

- 4. a) F. L. Harris and L. Weiler, <u>Tetrahedron Lett.</u>, 25, 1333 (1984).
 b) M. Majewski, J. R. Dreen and V. Snieckus, *ibid.*, 27, 531 (1986).
- 5. P. Beak, J. H. Hunter and Y. M. Jun, J. Am. Chem. Soc., 105, 6350 (1983).
- 6. α -alkylation products from 2 and 3 were characterized¹ mainly by IR (deconjugated carbonyl stretch at ca. 1715 cm⁻) and 'H NMR: diastereotopic α' -CH protons as AB quartets centered at ca. δ 4.2 (J_{AB} ~ 14 Hz) and terminal \longrightarrow_{H}^{H} in $\frac{4}{2}(\delta$ 4.8-5.0, broad "singlets") or vinyl groups in 5 (ABX patterns at δ 5.0-5.9).
- 7. a) M. Cooke and R. Goswami, J. <u>Am. Chem. Soc.</u>, <u>99</u>, 642 (1977).
 b) J. A. M. van den Goorbergh and A. van der Gen, Rec. Trav. Chim., <u>102</u>, 393 (1983).
- a) A. S. Narula, <u>Tetrahedron Lett.</u>, <u>22</u>, <u>4119</u> (1981).
 b) R. E. Ireland, R. H. Mueller and A. K. Williard, <u>J. Am. Chem. Soc.</u>, <u>98</u>, 2868 (1976).

(Received in USA 17 March 1986)